
Secure Flow Typing y

Dennis Volpano

Cynthia Irvine

Department of Computer Science

Naval Postgraduate School

Monterey� CA ������ USA

Abstract

Some of the most promising work in the area of
enforcing secure information �ow in programs is
based on static analyses of source code� However�
as yet� these e�orts have not had much impact in
practice� We present a new approach to analyz�
ing programs statically for secrecy and integrity
�ow violations� The analysis is characterized as a
form of type inference in a secure �ow type sys�

tem� The type system provides a uniform frame�
work for traditional type checking of programs and
information �ow control� Type�correct programs
have principal types that characterize how they
can be called securely� Applications of the type
system include �ow analysis of legacy code as well
as code written in newly�emerging Web languages
like Java�tm��

Keywords� secure information �ow� certi�cation�
type systems� Web programming

� Introduction

Secure information �ow within systems having
multiple sensitivity levels has long been a widely�
recognized problem� The classical problem is that

yAppeared in Computers and Security� Vol� ��� No� ��

pp� �������� �		�� This material is based upon activities

supportedby the National ScienceFoundationunder Agree

ment No� CCR
	������� Any opinions� �ndings� and con

clusions or recommendations expressed in this publication

are those of the authors and do not necessarily reect the

views of the National Science Foundation�

of a multilevel subject� one with a range of security
classes� executing code that either accidentally or
maliciously leaks or corrupts sensitive data� Leak�
ing such data is a violation of secrecy while its
corruption is a violation of integrity 	
� ��� Early
work in the area was motivated by the need to
securely handle information classi�ed at di�erent
levels within the government� the military in par�
ticular� But the problem is now also apparent
within the context of Internet programming and
newly�emerging Web programming languages like
Java 	���

With Java� programs� called Java applets�tm��
can be downloaded from the Internet and executed
with user privileges by a Java�compatible Web
browser like HotJava�tm� or Netscape Navigator
���� There are obvious secrecy and integrity prob�
lems here� For instance a downloaded applet may
attempt to make the contents of a user�s private
�les� such as mailfolders or log �les� public by mail�
ing them to remote sites� Currently� users have
the option� as in HotJava� to forbid downloaded
code from accessing any local �les� This is called
the Applet Host mode� In fact� this is the only
�security mode� available in the Netscape Naviga�
tor beta release� But such steps will undoubtedly
prove to be too impractical� Useful applets� like
mail and other transaction tools� will need access
to private �les in order to perform their tasks�

This is where the static analysis of code for se�
cure information �ow can provide a �ner level of
security in terms of secrecy as well as integrity�
For instance� it can allow access to private �les

�

yet guarantee that their contents are not stored
in public places� We begin by examining some of
these analyses in the next section� Unfortunately�
they have had little impact in practice� In Sec�
tion �� we propose an alternative form of static
analysis based on a powerful� yet very practical�
notion called type inference�

� Information Flow Control

Strategies

Secure information �ow within systems was stud�
ied years ago by Bell and LaPadula 	�� �� This was
followed by the work of Denning who presented a
lattice model of secure information �ow certi�ca�
tion and gave an algorithm for analyzing programs
for secure implicit and explicit �ows 	�� �� �� Den�
ning provided an informal treatment of the sound�
ness of secure �ow certi�cation� A more formal
treatment of its soundness was given by Mizuno
and Schmidt 	��� which is discussed in 	�
�
Andrews and Reitman 	�� in a related e�ort�

proposed extending a traditional axiomatic logic
for program correctness with secure �ow certi�ca�
tion� Their emphasis was on a formal speci�ca�
tion of certi�cation in a programming logic� They
did not consider any practical algorithms for their
extended logic� nor was soundness of the logic ad�
dressed� These are major drawbacks of their work�

The more recent work of Ban�atre� Bryce� and Le
M�etayer 	� is based on statically detecting �ow vi�
olations from an accessibility graph constructed for
a program� These graphs record information �ows
among variables at certain program points� This
work and secure �ow certi�cation are discussed in
more detail in the next two sections�

��� Denning�s Secure Flow Certi��
cation

In the lattice model of secure �ow certi�cation�
a �ow policy is represented by a poset � S���

where S is a set of security classes and � is a
partial order� called the �ow relation� specifying
permissible �ows between classes� Every variable

x is assigned a security class denoted by x and it
is assumed that x is static and can be determined
from class declarations given in a program� If x
and y are variables and there is a �ow of informa�
tion from x to y then it is a permissible �ow i�
x� y�
Every programming construct has a certi�cation

rule� Some rules certify explicit �ows while others
certify implicit �ows� For example� an assignment
statement y �� x is certi�ed i� x� y� that is� the
�ow of information from the security class of x to
that of y is prescribed by the �ow relation� This
is an example of certifying an explicit �ow� The
rules for conditional constructs� such as if state�
ments and while loops certify implicit �ows� For
example� the conditional statement

if x � � then y �� � else z �� �

is certi�ed i� x� y and x� z�
If the poset � S��� is a lattice� so that for

any pair of classes there are unique upper and
lower bound classes� then a simple attribute gram�
mar can be given to certify programs� It con�
sists only of synthesized attributes which are se�
curity classes computed using least upper bound
��� and greatest lower bound ��� operators 	��
For instance� the certi�cation condition for the if
statement above would become the single condi�
tion x� y � z�

����� Limitations of Certi�cation

One drawback of Denning�s �ow certi�cation is
that it requires security classes of variables to be
known at certi�cation time� So it is unsuitable for
analyzing legacy code unless the code is prepro�
cessed to include appropriate security class decla�
rations for all program objects�
Another� perhaps more serious practical draw�

back� is its treatment of procedures� Procedure
calls� in �ow certi�cation� have the form

call q �a�� � � � � am� b�� � � � � bn�

where the actual input parameters are a�� � � � � am
and the actual output parameters are b�� � � � � bn�
If procedure q has formal input parame�
ters x�� � � � � xm and formal output parameters

�

y�� � � � � yn� then the security of the call requires
that three conditions be veri�ed�

�a� q is secure�

�b� ai � xi for i � �� � � � �m� and

�c� yj � bj for j � �� � � � � n�

Conditions �b� and �c� certify �ow into and out
of the procedure respectively� Notice that q can
output results of a higher class than the inputs�
For example� suppose S consists of security classes
L �low� and H �high�� with L� H� and consider

procedure copy �in x � int L� out y � int H�
y �� x

end

Procedure copy copies its input x� declared with
security class L� to its output y of class H�
We can imagine erasing the class declarations

from the procedure so that it could be called to
copy fromH to H or from L to L� giving us a form
of polymorphism with respect to classes� To certify
calls of procedures that are generic with respect to
security classes� Denning proposes replacing con�
ditions �b� and �c� by the single condition

�b�� a� � � � � � am � b� � � � � � bn

under the assumptions that

�� procedure q�s output parameters are derived
solely from the input parameters and informa�
tion in a least class�

�� any local variables of q are erased upon return�
and

�� q does not write into any nonlocal objects�

Notice that �b��� unlike �b� and �c�� does not men�
tion the formal parameters of q� only the actual
parameters of a call� Thus di�erent calls to q can
induce di�erent instances of �b��� so polymorphism
is achieved but at a very high cost� Assumptions
��� are too restrictive in practice� Useful proce�
dures like a monitor for controlling access to a
shared bu�er are prohibited� Also compilers nor�
mallymake no attempt to erase the value of a local

variable on the stack� Besides� these assumptions
still have to be veri�ed before �b�� can be used
which is clearly outside the realm of certi�cation�
Mizuno proposed a more �exible strategy for

certifying recursive procedures in the style of Den�
ning 	��� It involves generating �ow constraints
for a program by computing the least �xed point
of a set of symbolic �ow equations� The equations
are constructed according to Denning�s certi�ca�
tion rules� The strategy� though� is limited to pro�
cedures whose arguments are passed by value or
by result�

��� Ban�atre et al�s Information
Flow Detection

Ban�atre� Bryce� and Le M�etayer give a compile�
time algorithm for detecting information �ow in
sequential programs whereby variables need not be
annotated with security classes 	�� What makes
their work appealing is that the algorithm is de�
rived� through a sequence of steps� from an initial
axiomatic� information��ow logic� The result is
an inference system whose rules are used to trans�
form information �ow graphs� called accessibility

graphs� The result of applying these transforma�
tions to an initial graph for a given program is
a �nal accessibility graph indicating whether the
contents of one variable at some point in the pro�
gram can �ow into an instance of a variable at
some other point� The drawback here is that the
number of vertices in the �nal accessibility graph is
at least linear in the size of the program�s abstract
syntax tree� This means that �nal graphs are ex�
tremely sensitive to program size as we shall see in
Section ���� Thus they are unsuitable as speci�ca�
tions of the secure �ow properties of programs�

� Secure Flow Typing

Type systems have been used to capture a variety
of di�erent kinds of program analyses� A type sys�

tem is basically a set of inference rules with which
one infers various properties of programs� Secure
information �ow is a program property� so we can
characterize it as a type correctness issue�

�

The secure �ow type system overcomes the lim�
itations of �ow certi�cation mentioned above and
does not require calculation of least �xed points as
in Mizuno�s approach� It is a uniform framework
for traditional type checking in programming lan�
guages and secure �ow enforcement� That is� the
issue of secure �ows is no longer orthogonal to the
more traditional type correctness issue of whether
a program is well formed� Further� standard type
inference techniques can be used to automate se�
cure �ow analysis in a way that makes it more
practical�
In the secure �ow type system� security classes

are basic types� which we denote here by � � and
the typing rules enforce secure information �ow�
For example� consider the typing rule for an as�
signment statement x �� e�

� � x � � acc� � � e � �
� � x �� e � � cmd

���

In order for the assignment to be well typed� it
must be that

� x is a variable of type � acc�eptor�� meaning
x is capable of storing information at security
level � � and

� expression e has type �security class� � �

Information about x is provided by � which maps
identi�ers to types� So� the rule states that in order
for the assignment x �� e to be judged secure� x
must be a variable that stores information at the
same security level as e� If this is true� then the
rule allows us to ascribe type � cmd to the entire
assignment statement� In general� a statement has
type � cmd only if every variable assigned to in
the statement is capable of storing information at
security level � or higher� Note that Denning�s �ow
certi�cation would not be concerned with whether
x of x �� e is a variable or a constant� But this is
not true of rule ���� which addresses the issue of
well formedness as well as secure �ow�
Another novel aspect of the type system is its

use of subtyping� A �ow policy � S��� naturally
corresponds to a subtype relation� If s� and s� are
members of S� or in other words are basic types�

such that s� � s�� then we say s� is a subtype of
s�� written s� � s��
Notice that typing rule ��� requires x and e to

have the same security level� This might appear
too restrictive for the rule prevents an upward �ow
from e to x� say for example� if x were high and e

low� This is where subtyping comes into play� It
allows us to coerce the type of e from low to high
to get agreement� A detailed formal treatment of
all typing rules and the subtyping logic is outside
the scope of this paper and can be found instead
in 	�
�

��� Polymorphism and Type Infer�
ence

A major advantage of the secure �ow type system
is that it can be implemented using powerful type
inference techniques� A type inference algorithm
not only proves whether a procedure is typable� or
free of illegal �ows� but it also produces a principal
type� which characterizes how the procedure can be
called securely�
A principal type usually comprises a set of sub�

type constraints among security classes� each of the
form �� � ��� Subtype constraints may be generic
and involve type variables that range over all secu�
rity classes� These variables can be specialized in
many di�erent ways� depending on the procedure�s
calling context� A context will require them to be
specialized in a certain way� As long as the spe�
cialization satis�es the constraints� the procedure
can be executed without causing any illegal �ows�
So a procedure is e�ectively parameterized on the
security classes of its formal parameters� In this
sense� it is polymorphic�
For example� consider the procedure

procedure copy �in x � int � out y � int�
begin

y �� x

end

It has the inferred principal type

��� � with � � � � � proc��� � acc�

where � and � are type variables such that � cor�
responds to the security class of x and � to the

�

security class of y� The principal type succintly
conveys how the procedure can be securely called�
Any call can be executed securely providing the
arguments of the call have security classes that�
when substituted for the bound variables � and �

of the type� satisfy the constraint � � �� The call
itself will have type � cmd � For instance� copy has
type L proc�L�L acc� and therefore can be called
to copy from low to low� with the call itself being
regarded as a low command of type L cmd � It also
has type H proc�L�H acc�� so it can be called to
copy from low to high� But it cannot be called to
copy from high to low because H �� L�
Notice that in a call to copy� type variables �

and � can be specialized respectively to any se�
curity classes �� and �� as long as the subtype
constraint �� � �� is satis�ed� The constraint� in
Denning�s model� translates into �� � ��� which
is precisely condition �b��� However� in the secure
�ow type system� the constraint is inferred auto�
matically as a consequence of typing the assign�
ment y �� x by rule ���� Denning�s approach to

polymorphism e�ectively limits all typings of pro�

cedures to at most one subtype constraint� namely

the constraint corresponding to �ow condition �b���
This greatly limits the kind of polymorphic proce�
dures one can write� In general� a procedure can
induce multiple subtype constraints� depending on
its de�nition�
It might appear that the number of subtype con�

straints in a principal type would grow too quickly�
in the size of the program� to be useful in prac�
tice� After all� there are programs in the context
of traditional subtyping that require the number of
constraints in their principal types to grow at least
linearly in program size 	�� Obviously� the utility
of a type inference algorithm that produces prin�
cipal types with this many constraints is severely
limited� However� our experience has been that
this kind of growth is not an issue for secure �ow
typing in practice� An inferred principal type for
a program is typically much smaller than the pro�
gram itself due to type simpli�cation 	��� Princi�
pal types are relatively insensitive to program size�
For instance� consider a new version of proce�

dure copy � The original version has an explicit
�ow from x to y� Suppose we accomplish the same

x0 a0 b0

a2 a4 b4 b8

a6 a5 b6 b5

b2

y8

a7 a8 b7

Figure �� Accessibility graph for new copy

e�ect through an implicit �ow instead� This can
be achieved as follows�

procedure copy�in x � int � out y � int�
var a �� x

var b �� �
begin

while a � � do
a �� a	 ��
b �� b� �

od�
y �� b

end

The new version has the same inferred principal
type as the original version even though its de�ni�
tion is quite di�erent�

Contrast this insensitivity with that of calculat�
ing an accessibility graph for the program as de�
scribed in 	�� The graph calculated for the original
version of copy has only the single edge �x�� y���
conveying there is a �ow from x at entry point
p� to y at point p�� These program points arise
from the procedure body expressed with explicit
program points� as in �p�� y �� x�� there is also a
distinguished point� p�� which represents the entry
point of the procedure�

Now compare this simple graph with the graph
in Figure �� which is obtained from the new version
of copy � The new graph is constructed from copy

with explicit program points introduced as follows�

procedure copy�in x � int � out y � int�
var a

var b �� �
�p�� �p�� a �� x��

�p�� �p�� while a � � do
�p�� �p�� a �� a	 ���

�p�� b �� b� ��
�

od��
�p�� y �� b�

�
�

The constructed graph has grown in size propor�
tional to the number of program points �there are
now � such points�� Notice that there is a path
from x� to y� con�rming the implicit �ow from x

at point p� to y at point p� in the program� How�
ever� the graph does not tell us how copy can be
called securely� only that there is a �ow from x to
y� For these reasons� accessibility graphs are un�
suitable as user�level speci�cations of a procedure�s
information �ow properties� Moreover� one can see
that the focus of this approach is on identifying
�ows among instances of program variables� This
leads to other problems that do not arise with se�
cure �ow typing� For example� pointers and alias�
ing of locations complicate graph construction� re�
quiring some form of pointer aliasing analysis�
As a �nal example� consider the library decryp�

tion procedure in Figure �� taken from 	�� The
encrypted character array cipher is decrypted us�
ing key and stored in clear � We assume that the
decryption is done by D and that the cost of doing
the decryption is stored in variable charge�
The principal type inferred for decrypt is

� �� �� �� �
with � � �� � � �� � � ��

� proc��� � arr � � arr � � var�

The type has three subtype constraints that gov�
ern how decrypt can be used securely� Any call of
the procedure can be executed securely provided
the arguments of the call have security classes that
satisfy all the constraints� The call itself will have
type � cmd � For instance� the substitution

� � L� � � H� � � � � L

procedure decrypt�in key � int �
inout cipher � clear � array of char �
inout charge � int�

var i �� �
var unit �� unit rate constant

begin

charge �� unit �
while cipher 	i � � do

if encrypted �cipher 	i� then
charge �� charge � �
 unit �
clear 	i �� D�cipher 	i� key�

else

charge �� charge � unit �
clear 	i �� cipher 	i

��
i �� i � �

od

end

Figure �� The library decryption procedure

satis�es the constraints� so decrypt can be called
as a procedure with type

L proc�H�L arr �H arr� L var�

and the call will have type L cmd � The call cannot�
however� be typed as H cmd unless the argument
corresponding to charge is high�
Another very useful facet of type inference in

this setting is its ability to reveal suspicious code
through changes in principal types� For example�
if we change the expression

charge �� charge � �
 unit �

in procedure decrypt to the expression

charge �� charge � key � �
 unit �

in an attempt to deduce the key from the output
charge� then the principal type of decrypt becomes

� �� �� 	� �� �

with � � �� � � �� � � �� 	 � �� 	 � ��

� proc�	� � arr � � arr � � var�

Notice the two additional subtype constraints 	 �
� and 	 � �� The former says that the security

�

level of the clear array must be at least that of the
input key� This constraint stems from the assign�
ment to clear involving a call to the decryption
procedure D with the key as an argument� It did
indeed arise for the original version of decrypt as
well� but it was eliminated through type simpli��
cation� 	 was replaced by �� giving � � � which
was deleted� The latter constraint� on the other
hand� is new� It says that the security level of the
charge parameter must be at least that of the in�
put key� So now any procedure call with a high
key will no longer be well typed unless the charge
parameter is also high� Such a restriction would
likely be unacceptable� but the point here is that
type inference clearly reveals it�

� Discussion

As Denning pointed out� the secure �ow problem
for a typical programming language is undecidable
	�� Consequently� any sound and recursive logic
for proving that programs have no secure �ow vi�
olations is necessarily incomplete� This is a com�
mon tradeo� for the soundness and decidability of
a logical system� So like Denning�s certi�cation�
the type system is incomplete� This means that
the type system may rule out some secure pro�
grams� Although more experience is needed� the
type system has been designed to reduce the num�
ber of false positives 	�
�
The utility of the type system rests on the

proper classi�cation of information� Sometimes an
algorithm will produce sensitive data from inputs
that are not considered sensitive� Examples range
from functions that generate cryptographic keys
to signal processing algorithms designed to extract
target signatures from background noise� Perhaps
neither the inputs nor the arithmetic operations
used in these algorithms would� separately� be con�
sidered sensitive� But they may be used to calcu�
late sensitive data� The type system will not detect
that such data are actually sensitive� However� the
algorithm can be packaged as a procedure whose
type can be asserted to re�ect the di�erent secu�
rity levels of the inputs and outputs� Then the
type system can ensure that it is called securely�

We envision secure �ow typing being used
within Web browsers� speci�cally� within Java�
compatible browsers� One approach being inves�
tigated is to incorporate it into the Class Loader
for Java applets� A Class Loader could perform
secure �ow typing on applet bytecodes and sub�
sume the level of type checking currently done on
instructions of the virtual machine� Such typing
would ensure secrecy and integrity of downloaded
Java applets� In the case of integrity� for instance�
one can imagine �nancial centers serving applets
to users that perform� say� �nancial transactions�
Some applet may need to make an entry into a ��
nancial audit trail and the integrity of the audit
trail must be assured� Secure �ow typing could
be used to certify that an applet does not corrupt
the audit trail with low integrity information of a
transaction�

� Summary

Approaches to the static analysis of code for se�
cure information �ow have had little impact in
practice so far� This paper has described an al�
ternative static analysis that we have argued is an
improvement over these other approaches� Secure
�ow analysis is characterized as a type inference
problem� Procedures that have no illegal �ows are
given principal types that convey how they can be
called securely in di�erent contexts� These types
can serve as speci�cations for the secure �ow prop�
erties of programs� The role of secure �ow typ�
ing in Web programming� like that encouraged by
Java� needs further investigation� However� it is
clear that such type inference can provide a �ner
level of security for clients than is currently avail�
able in certain Web browsers�

References

	� G� Andrews and R� Reitman� An Ax�
iomaticApproach to InformationFlow in Pro�
grams� ACM Transactions on Programming

Languages and Systems� �����
����� �����

�

	� J� Ban�atre� C� Bryce� and D� Le M�etayer�
Compile�time Detection of Information Flow
in Sequential Programs� In Proceedings �rd

European Symposium on Research in Com�

puter Security� pages

���� Brighton� UK�
November ����� Lecture Notes in Computer
Science ��
�

	� D� Bell and E� Burke� A Software Validation
Technique for Certi�cation� The Methodol�
ogy� Technical Report MTR������ MITRE
Corp�� Bedford� MA� �����

	� D� Bell and L� LaPadula� Secure Com�
puter System� Mathematical Foundations
and Model� Technical Report M�������
MITRE Corp�� Bedford� MA� �����

	
 K� Biba� Integrity Considerations for Secure
Computer Systems� Technical Report ESD�
TR�������� MITRE Corp�� �����

	� D� Denning� Secure Information Flow in

Computer Systems� PhD thesis� Purdue Uni�
versity� West Lafayette� IN� May ���
�

	� D� Denning� A Lattice Model of Secure Infor�
mation Flow� Communications of the ACM�
���
���������� �����

	� D� Denning and P� Denning� Certi�cation
of Programs for Secure Information Flow�
Communications of the ACM� ������
���
���
�����

	� M� Hoang and J� Mitchell� Lower Bounds on
Type Inference with Subtypes� In Proceedings

��nd Symposium on Principles of Program�

ming Languages� pages ������
� San Fran�
cisco� CA� ���
�

	�� T� Lunt� P� Neumann� D� Denning� R� Schell�
M� Heckman� and W� Shockley� Secure Dis�
tributed Data Views Security Policy and In�
terpretation for DMBS for a Class A� DBMS�
Technical Report RADC�TR�������� Vol I�
Rome Air Development Center� Gri�ss� Air
Force Base� NY� December �����

	�� M� Mizuno� A Least Fixed Point Approach
to Inter�Procedural Information Flow Con�
trol� In Proceedings ��th National Computer

Security Conference� pages

��
��� �����

	�� M� Mizuno and D� Schmidt� A Security Flow
Control Algorithm and its Denotational Se�
mantics Correctness Proof� Formal Aspects

of Computing� ���A�������
�� �����

	�� G� Smith� Polymorphic Type Inference for

Languages with Overloading and Subtyping�
PhD thesis� Cornell University� Ithaca� NY�
����� Tech Report ��������

	�� A� van Ho�� S� Shaio� and O� Starbuck�
Hooked on Java� Addison�Wesley� �����

	�
 D� Volpano� G� Smith� and C� Irvine� A Sound
Type System for Secure Flow Analysis� sub�

mitted to J� Computer Security� �����

�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

